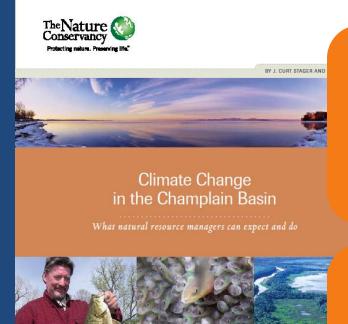

Climate Vulnerability and Economic Assessment for At-Risk Transportation Infrastructure in the Lake Champlain Basin, NY

Michelle Brown, The Nature Conservancy Debra Nelson, NYS Department of Transportation



Goal

Integrate climate vulnerability data into **NYSDOT** planning tools and guidelines and develop an economic approach to focus investments to improve vulnerable infrastructure.

What is the climate problem?

Prediction:
temperature
increases ranging
between 6 and
11°F

- more droughts in the summer
- warmer stream conditions
- more stress on brook trout

Prediction:
 precipitation
increases between
 10 and 15% and
more frequent and
intense storms

- more high water events
- more stress on infrastructure
- human communities more at risk

Culverts and the Triple Bottom Line

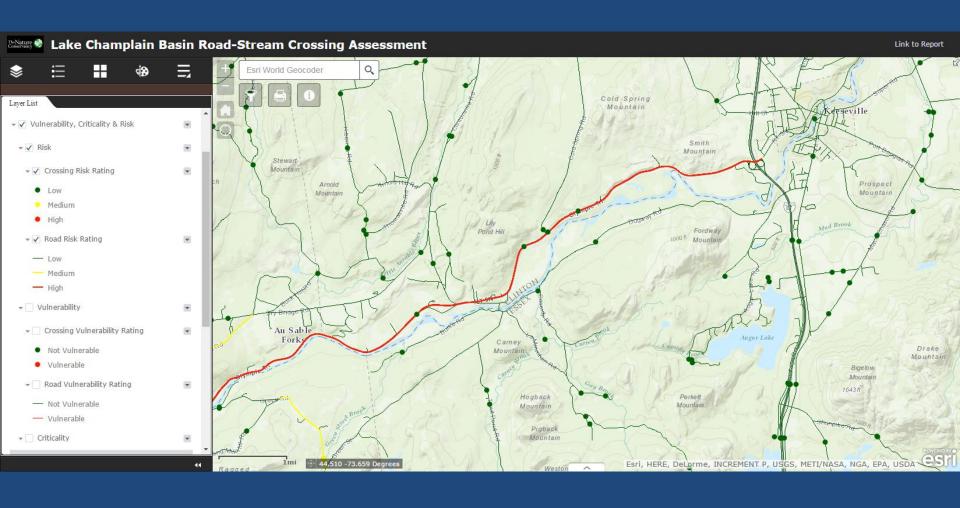
ECOLOGICAL:

- Fish populations with access to cold, upstream waters
- Improved habitat
- Decreased erosion of banks
- Avoided water quality impacts

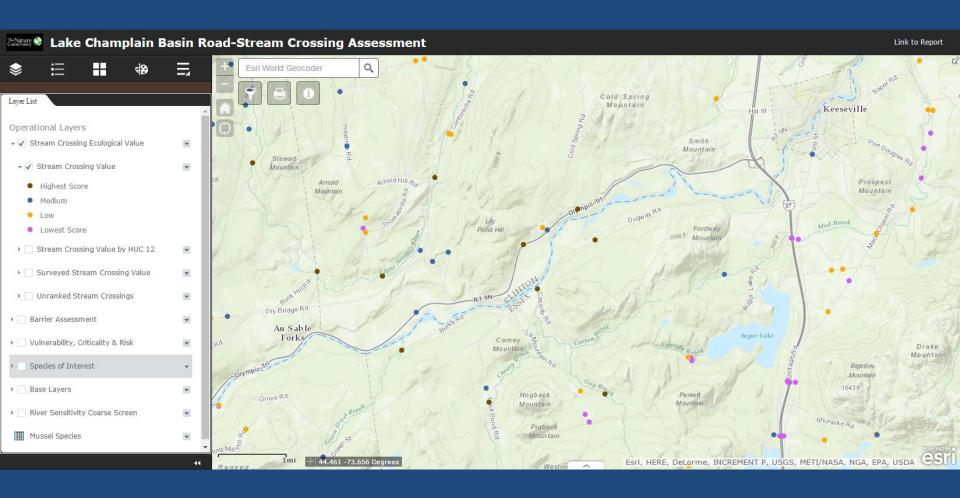
RIGHT SIZE
CULVERTS
can provide
multiple
benefits

- Avoided flood damage
- Avoided travel delays
- Avoided loss of business/tourism income from road closures
- ROI improves over time

SOCIAL:


- Improved safety

 and mobility on
 transportation
 systems, including
 access to
 emergency services
- Avoided health impacts


Factors evaluated

- Risk factors (vulnerability, criticality)
- Predicted future flows
- Environmental values
- Social benefits
- Economic benefits
- Cost scenarios

Risk factors (vulnerability, criticality)

Environmental values

Benefits Valuation (data rich)

Total annual benefits =

(social benefits + economic benefits) * environmental benefits

Benefit (\$/year)	Formula (Required data inputs are indicated in bold italics)	
Mobility: additional	Annual travel cost = Detour length (miles) x Standard mileage rate	
travel cost from	(\$0.565/mile ¹) x Average daily traffic count x Duration of road closure	
road closure	(days) x Annual probability of road-closing flood	
Mobility: additional	Annual travel time = <i>Time to travel detour (hours)</i> x Travel t	Table 5
travel time from	(\$30.69/vehicle-hour²) x Average daily traffic count x Durai	
road closure	closure (days) x Annual probability of road-closing flood	Benefit
Access to critical	Annual cost of inaccessible fire station = Daily cost of inacce	Avoided
services: loss of	station ³ x Duration of road closure (days) x Annual probabi	Avoided
access to fire station	closing flood	
Access to critical	Annual cost of inaccessible EMS = Daily cost of lost access to	
services: loss of	Duration of road closure (days) x Annual probability of roa	
access to EMS	flood	Avoided
Access to critical	Annual cost of loss of access to hospital = Daily cost of lost a	disrupti
services: loss of	hospital ⁵ x Duration of road closure (days) x Annual probak	
access to hospital	closina flood	

Table 5. Approaches for Benefit Valuation: Economic Benefits

Benefit (\$/year)	Formula (Required data inputs are indicated in <i>bold italics</i>)	
Avoided flood damage	Annual flood damages to be calculated with FEMA BCA tool using	
	Damage Frequency Assessment (DFA) module; data needs: flood	
	damage value for at least three storm events, year of storm events,	
	year structure built, return period for storm events	
Avoided freight	Annual detour cost = Annual probability of road-closing flood x	
disruption: detour cost	Duration of road closure (days) x Daily number of truck trips x	
	Direct transport cost per vehicle-mile (\$1.39/truck-mile ⁸) x <i>Length of</i>	
	detour (miles)	
Avoided freight	Annual delay cost = Annual probability of road-closing flood x	
disruption: delay cost	Duration of road closure (days) x Daily number of truck trips x	
	Direct transport cost per vehicle-hour (\$59.03/truck-hour ⁹) x	
	Increase in delivery time (hours)	
Avoided freight	Annual inventory cost = Annual probability of road-closing flood x	
disruption: inventory	Duration of road closure (days) x Daily number of truck trips x	
cost	Average payload (lbs) ¹⁰ * 1 ton/2000 lbs. x Increase in delivery time	
	(hours) x Average truck freight value/ton-hour (\$0.98/ton-hour ¹¹)	

Benefits Valuation (data rich)

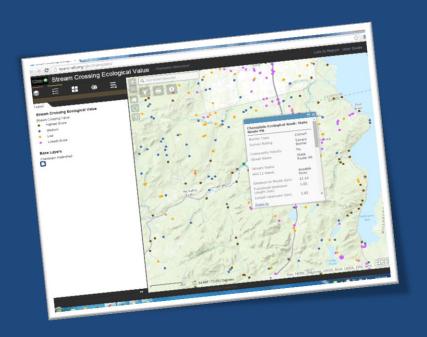
Total annual benefits =

(social benefits + economic benefits) * environmental benefits

Data

Data Value	NYS 9N, Ausable
AADT (two-way)	2,251
Detour length (miles)	3.7
Duration of road closure (days)	3
Probability of road closing flood (percent)	15%
Time to travel detour (hours @ 40 mph)	0.093
Daily number of truck trips	119
Increase in delivery time (hours)	0.093

Total annual benefits =

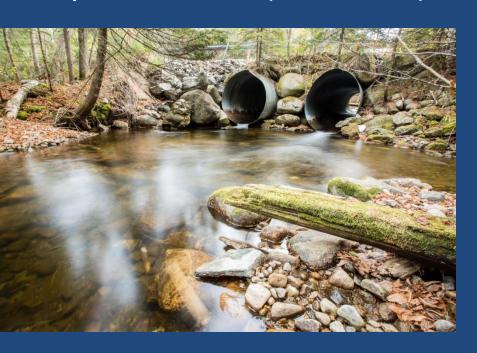

(\$2,117.57 + \$2,875.59 + \$276.11 + \$293.14) * 1.2 = \$6,674.89

Valuation

Benefit (\$/yr)	NYS 9N, Ausable
Social Values	
mobility benefit	\$2,117.57
(additional travel cost)	
mobility benefits	\$2,875.59
(additional travel time)	
Economic Values	
avoided freight disruption	\$276.11
(detour cost)	
avoided freight disruption	\$293.14
(delay cost)	
Environmental Values	
environmental benefits	1.2
value	

Benefits Valuation (data poor)

Total annual benefits = environmental benefits score * risk score



Risk Value	NYS 9N, Ausable
Vulnerability Score	10
Critical Facility Score	0
Functional Classification Score	5
Criticality Score	5
Risk Score	50
Risk Value*	1.2

^{*}Risk Value – High = 1.2; Medium = 1.1; Low = 1.0

Cost scenarios

<u>Methods</u> - Compared costs for three types of culvert replacements: 1) in-kind, 2) climate-sized, and 3) stream-sized

Results - Future streamflow projections generally consistent with meeting ecological best practices (1.25 bankfull flow)

Lessons Learned

- Flexible ecological framework is scalable and replicable
- Institutional knowledge has pros and cons
- Aquatic organism passage often consistent with future streamflow – needs additional study
- Benefits data lacking
- A robust decision support tool should include risk score (criticality + vulnerability), social benefits, economic benefits, and environmental value
- Strong asset management is key to adapting transportation system

Thanks

Michelle Brown, The Nature Conservancy michelle_brown@tnc.org

Debra Nelson, NYS Department of Transportation Debra.Nelson@dot.ny.gov

