Minimizing Flood Risks and Habitat Impacts Due to Post-Flood Recovery Efforts

Roy Schiff, Milone & MacBroom, Inc.
Mike Kline, Vermont Agency of Natural Resources
Shayne Jaquith, Vermont Agency of Natural Resources
Barry Cahoon, Vermont Agency of Natural Resources
Jim MacBroom, Milone & MacBroom, Inc.
Evan Fitzgerald, Fitzgerald Environmental Associates, LLC

Source: Lars Gange & Mansfield Heliflight, August 31, 2011
INVERT METRIC RESPONSE - Richness

Source: VTDEC, 2012
77 miles of dredging after Irene (VTDFW)

176 miles of historic straightening in the same watersheds (VTDEC)

<table>
<thead>
<tr>
<th>Vulnerability Level</th>
<th>2011</th>
<th>1976</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Vulnerability</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>Same Vulnerability</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>More Vulnerability</td>
<td>40%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Source: VTDFW, 2011
1. Perform an alternatives analysis based on risk minimization, limiting habitat impacts, and controlling project cost. Consider the no-action alternative first.
2. Link flood damages to river processes for proper problem identification.
3. Consider scale.

- **Catchment**
- **Corridor**
- **Reach**
- **Barform**
- **Bedform**
- **Grain**

Spatial scale

- **Sediment Transport**
 - Woody Debris
- **Hydraulic Roughness**
 - Recruitment
- **Bar Growth**
 - Local Succession Processes
- **Meander Dynamics**
 - Patch Dynamics, Processes Affecting Community Structure
- **Aggradation/Incision**
 - Inter-Population Dynamics
- **Climate**
 - Hydrologic / Sediment Regimes
 - Adaptation

Time scale (years)

- 10^{-1}
- 10^0
- 10^1
- 10^2
- 10^3+

Manage toward Least Erosive Condition
Minimize actions that lead to aggradation and incision to decrease vulnerability of the human infrastructure.

Within a decade the river will begin creating habitat for native communities.
4. Follow the principles of fluvial geomorphology and current best engineering practice.

Source: Landslide Natural Resources Planning, 2013
5. Restore reference geometry. Evaluate stream power v. resistance to erosion.
6. **Restore floodplain connection to limit future in-channel work.**

[Images of historic fill and restored floodplain]
- Total Power decreases range 100-700 W/m² (948 to 167)
- Flood velocity decreases 1-4 feet per second
- Flood depth decreases 0.2-1.0 feet
7. Manage channels towards a least erosive, vertically stable equilibrium.

Source: Lane, 1955; Rosgen and Silvey, 1996
8. Dredge only where infrastructure and buildings are vulnerable to damage.
9. Properly size bridges and culverts so that they are geomorphically compatible and maintain AOP.

VT Stream Alteration General Permit (GP) Design Requirements

- \(W_{\text{structure}} = 1.0 \times W_{\text{bankfull channel}} \)
- \(H_{\text{opening}} = 4 \times D_{\text{bankfull channel}} \)
- \(D_{\text{embed}} = 30\% \times H_{\text{opening}} \) or \(D_{84} \) for boulder bed, whichever larger

• Match channel profile and create uniform longitudinal transitions at inlet and outlet.

• Structure shall not obstruct aquatic organism passage.
10. Conserve river corridors to provide space for the river to reduce flood risks and the need for flood recovery.